Editor's Note: Take a look at our featured best practice, Cloud Strategy Template (42-page Word document). This document provides both an outline of the various sections you should include in a document which describes your organisations cloud strategy and extensive example content. The example content is drawn from a real world example cloud strategy for a mid to large organisation who have invested [read more]
Can You Bridge Business Science and Data Intelligence in Cloud Data Warehouses?
Also, if you are interested in becoming an expert on Digital Transformation, take a look at Flevy's Digital Transformation Frameworks offering here. This is a curated collection of best practice frameworks based on the thought leadership of leading consulting firms, academics, and recognized subject matter experts. By learning and applying these concepts, you can you stay ahead of the curve. Full details here.
* * * *
In 2021, you don’t need someone to tell you that digital transformation has already become a mainstay for modern businesses. While companies were already leveraging different types of digital technology, the COVID-19 pandemic has further accelerated the process.
One of the most significant outcomes of the digital transformation of businesses is the generation of a vast assortment of data. When judiciously used, this data can be instrumental in optimizing business processes and skyrocketing revenue.
The Downside of Data
Most organizations lack the right infrastructure to store, process, and analyze data. Even if they invest in the right data analytics tools, the insights often don’t make their way to other teams, including business development and planning.
It creates a significant gap between strategic planning and business intelligence. While you might have a plethora of data in your hands, it’ll be of no use unless you can turn it into action-driven insights and facilitate better decision-making.
That’s where cloud data warehouses (CDWs) step into the picture. They help break the organizational silos that exist between business science and data intelligence.
In this blog, we’ll take a closer look at the concept of cloud data warehousing, and understand how it empowers business intelligence. Also, we’ll discuss tips to harness the potential of CDWs for data-driven business planning and decision-making. Let’s get started.
Cloud Data Warehouses: An Overview
Simply put, a cloud data warehouse is a centralized cloud-based repository that stores, analyzes, and transforms an organization’s data. It’s equipped to collect incoming data streams from various systems. Also, it structures and formats the collected data to make it useful for different departments.
CDWs eliminate the need for organizations to procure and maintain dedicated hardware for on-premise data warehouses. Also, they help overcome the drawbacks of legacy data warehouses.
CDWs are known for their improved performance, scalability, elasticity, and reliability. Also, team members can access the data using any device from any location, as long as they have reliable internet access. That makes cloud data warehouses particularly useful for today’s hybrid working environments.
Considering these benefits, it isn’t surprising that the global cloud data warehouse market is expected to be worth $39.1 billion by 2026.
But one of the lesser-known benefits of CDWs is the integration of data intelligence into business science and strategy.
Merging Business Science with Data Intelligence: The Role of Cloud Data Warehousing
Business science involves the use of data to drive business decisions and processes. On the other hand, data intelligence refers to the application of artificial intelligence and predictive analytics to convert the collected data into actionable insights.
It’s easy to see how useful data intelligence can be for business science. It can help organizations improve operations using result-oriented data, instead of relying on guesswork and intuition.
But the complexity of storing and interpreting data from various sources often creates a disconnect between these domains.
While data analytics tools might generate plenty of insights, senior-level decision-makers often don’t have the resources to interpret them. That’s because most business intelligence tools require the data to be presented in a proper structure and format.
The role of cloud data warehouses is to eliminate this friction. They facilitate seamless interaction between data analytics and business intelligence tools. They store data and insights in a proper format that can be accessed and comprehended by different departments.
With nearly 53% of enterprises migrating their data to the cloud, it’s futile to wonder whether CDWs collate business science and data intelligence. Instead, you need to identify the best strategies to achieve the integration of business science and data analytics for a robust business intelligence infrastructure.
Enhancing Business Intelligence with Cloud Data Warehouses
If you want to maximize the utilization of data intelligence for driving business decisions, the first step is to choose the right cloud data warehouse. From Amazon Redshift and Google BigQuery to Snowflake and Azure Synapse – the CDW market is flooded with options.
If you’re unsure about which service provider to select, going through a detailed Snowflake vs Redshift comparison could help. You can learn about the performance of each CDW and find out whether it offers decoupled storage and compute. Also, make sure you check the pricing plans and storage formats before making the final selection.
It’s just as important to outline a seamless data migration strategy. Copying all your data to the cloud at once could prove to be counterproductive. Instead, create a gradual migration plan that focuses on individual departments.
Lastly, you need to invest in the right set of business intelligence with in-built analytics solutions. Make sure the tools easily integrate with your cloud data warehouse.
Improving Business Decision-Making with Cloud Data Warehousing
Business science and data intelligence share the common goal of driving better business decisions. Combining the power of cloud computing with data warehouses will bridge the gap between these domains and help you make the most of business intelligence tools.
Want to Achieve Excellence in Digital Transformation?
Gain the knowledge and develop the expertise to become an expert in Digital Transformation. Our frameworks are based on the thought leadership of leading consulting firms, academics, and recognized subject matter experts. Click here for full details.
Digital Transformation is being embraced by organizations of all sizes across most industries. In the Digital Age today, technology creates new opportunities and fundamentally transforms businesses in all aspects—operations, business models, strategies. It not only enables the business, but also drives its growth and can be a source of Competitive Advantage.
For many industries, COVID-19 has accelerated the timeline for Digital Transformation Programs by multiple years. Digital Transformation has become a necessity. Now, to survive in the Low Touch Economy—characterized by social distancing and a minimization of in-person activities—organizations must go digital. This includes offering digital solutions for both employees (e.g. Remote Work, Virtual Teams, Enterprise Cloud, etc.) and customers (e.g. E-commerce, Social Media, Mobile Apps, etc.).
Learn about our Digital Transformation Best Practice Frameworks here.
Readers of This Article Are Interested in These Resources
|
Excel workbook
|
|
170-page PDF document
| |||
About Shane Avron
Shane Avron is a freelance writer, specializing in business, general management, enterprise software, and digital technologies. In addition to Flevy, Shane's articles have appeared in Huffington Post, Forbes Magazine, among other business journals.Top 10 Recommended Documents on Cloud
» View more resources Cloud here.
» View the Top 100 Best Practices on Flevy.