Lean AI   123-page PDF document
$99.00

Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Log in to unlock full preview.
Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Lean AI (123-page PDF document) Preview Image
Arrow   Click main image to view in full screen.

Lean AI (PDF)

PDF document 123 Pages

$99.00

Add to Cart
  


Immediate download
Editable with PDF editor
Free lifetime updates

ARTIFICIAL INTELLIGENCE PDF DESCRIPTION

This product (Lean AI) is a 123-page PDF document, which you can download immediately upon purchase.

Lean AI Workshop
Workshop Summary
This Lean AI workshop introduces a practical, outcome-driven approach to building AI and machine learning solutions that prioritize speed of learning, measurable value, and continuous improvement over traditional heavy upfront development. Instead of focusing solely on building complex models, Lean AI emphasizes hypothesis-driven experimentation, iterative delivery, and strong measurement practices to ensure teams solve the right problems efficiently.
The workshop begins by establishing the foundations of Lean AI, positioning it as an evolution of Lean and Agile principles adapted for modern AI and data-driven systems. Participants learn how to frame AI initiatives around business outcomes rather than technology-first approaches, ensuring that experimentation aligns with real-world impact. Core concepts include defining clear hypotheses, validating assumptions early, minimizing waste, and using rapid feedback loops to guide development decisions.
A key focus is understanding the end-to-end AI and ML lifecycle—from problem framing and data preparation to model development, evaluation, deployment, and long-term monitoring. The program demonstrates how Lean AI integrates across this lifecycle, encouraging teams to continuously measure outcomes and adjust strategies rather than relying on static project plans.
Participants explore how to structure hypothesis-driven experiments, create testable assumptions, and design demo plans that translate ideas into measurable results. The workshop emphasizes building baseline solutions quickly, learning from data early, and iterating based on evidence. Practical frameworks guide teams through defining success metrics, selecting meaningful KPIs, and embedding measurement into development workflows from the beginning.
Another important component is identifying common pitfalls in AI initiatives. Participants examine risks such as poor metric selection, confirmation bias, over-engineering, lack of reproducibility, and insufficient monitoring after deployment. By understanding these challenges, teams learn to design more resilient and sustainable AI processes.
The workshop also covers best practices for experimentation, version control, and reproducibility. Participants learn how to track experiments, maintain provenance of data and models, and ensure consistent environments to enable reliable iteration. Infrastructure considerations such as runtime environments, infrastructure-as-code, and operational runbooks are introduced to help bridge the gap between experimentation and production readiness.
Operational excellence is addressed through monitoring, drift detection, and continuous improvement strategies. Lean AI treats deployment as the beginning of learning rather than the final step, encouraging teams to collect feedback, analyze performance trends, and refine solutions over time. Post-mortems and incident analysis help establish a culture of learning and resilience.
Through applied exercises, practical demonstrations, and case studies, participants gain experience using Lean AI principles to make data-driven decisions, prioritize work effectively, and maintain alignment between technical development and business objectives. The workshop equips teams with repeatable frameworks, templates, and practices that support faster experimentation cycles, improved collaboration, and sustainable delivery of AI-enabled solutions.
By the end of the program, participants will understand how to:
• Apply Lean principles to AI and ML workflows
• Structure hypothesis-driven experiments and measurable outcomes
• Build baseline solutions quickly and iterate systematically
• Design KPIs aligned with business value
• Avoid common experimentation and measurement pitfalls
• Maintain reproducibility and experiment traceability
• Transition from experimentation to reliable production deployment
• Implement monitoring and continuous improvement practices
________________________________________
Integrated Workshop Agenda
The workshop follows a structured flow that mirrors the Lean AI lifecycle, combining conceptual understanding with hands-on application.
1. Foundations of Lean AI
• Introduction to Lean AI concepts and mindset
• Differences between traditional AI development and Lean approaches
• Business motivations and value-driven experimentation
• Core Lean principles applied to AI systems
• Common challenges, risks, and anti-patterns in AI projects
2. Problem Framing and Hypothesis-Driven Development
• Defining problem statements and success criteria
• Structuring hypotheses and testable assumptions
• Designing experiment plans and validation strategies
• Translating business goals into measurable technical objectives
• Creating demo workflows to validate ideas quickly
3. AI/ML Lifecycle Overview
• End-to-end lifecycle from data to operations
• Pipeline stages and workflow dependencies
• Build–Measure–Learn loop in AI development
• Integration of measurement across lifecycle stages
• Aligning stakeholders and workflows around continuous feedback
4. Build Phase – Rapid Development and Experimentation
• Establishing baseline solutions
• Prioritizing development tasks using Lean principles
• Efficient experimentation strategies
• Model development checklists and evaluation heuristics
• Balancing speed and quality during iteration
5. Measurement and KPI Design
• Designing meaningful KPIs aligned with business outcomes
• Measurement layers and examples
• Integrating measurement into releases and workflows
• Avoiding common measurement mistakes
• Data-driven decision-making frameworks
6. Iterate Phase – Reproducibility and Experiment Tracking
• Version control for code, data, and models
• Experiment tracking and provenance management
• Reproducibility strategies and validation practices
• Continuous improvement techniques
• Leveraging insights from experimentation cycles
7. Deployment and Operationalization
• Runtime and environment considerations
• Infrastructure-as-code concepts
• Deployment planning and operational readiness
• Creating deployment runbooks and workflows
• Bridging experimentation and production systems
8. Monitoring, Reliability, and Continuous Learning
• Monitoring model performance and system health
• Drift detection and long-term performance evaluation
• Incident response and post-mortem analysis
• Reliability practices for sustainable AI systems
• Embedding continuous improvement into delivery culture
9. Applied Case Studies and Practical Implementation
• Real-world application examples
• Practical tips for integrating Lean AI into existing teams
• Tooling and metrics considerations
• Progressive assets and optional components for advanced workflows

Got a question about the product? Email us at support@flevy.com or ask the author directly by using the "Ask the Author a Question" form. If you cannot view the preview above this document description, go here to view the large preview instead.

Source: Best Practices in Artificial Intelligence, Lean PDF: Lean AI PDF (PDF) Document, Swayaan Digital Solutions Pvt Ltd.


$99.00

Add to Cart
  

ABOUT THE AUTHOR

Ask the Author a Question

You must be logged in to contact the author.

Click here to log in Click here register

Did you know?
The average daily rate of a McKinsey consultant is $6,625 (not including expenses). The average price of a Flevy document is $65.




Trusted by over 10,000+ Client Organizations
Since 2012, we have provided best practices to over 10,000 businesses and organizations of all sizes, from startups and small businesses to the Fortune 100, in over 130 countries.
AT&T GE Cisco Intel IBM Coke Dell Toyota HP Nike Samsung Microsoft Astrazeneca JP Morgan KPMG Walgreens Walmart 3M Kaiser Oracle SAP Google E&Y Volvo Bosch Merck Fedex Shell Amgen Eli Lilly Roche AIG Abbott Amazon PwC T-Mobile Broadcom Bayer Pearson Titleist ConEd Pfizer NTT Data Schwab





Read Customer Testimonials

 
"As a consultant requiring up to date and professional material that will be of value and use to my clients, I find Flevy a very reliable resource.

The variety and quality of material available through Flevy offers a very useful and commanding source for information. Using Flevy saves me time, enhances my expertise and ends up being a good decision."

– Dennis Gershowitz, Principal at DG Associates
 
"Flevy.com has proven to be an invaluable resource library to our Independent Management Consultancy, supporting and enabling us to better serve our enterprise clients.

The value derived from our [FlevyPro] subscription in terms of the business it has helped to gain far exceeds the investment made, making a subscription a no-brainer for any growing consultancy – or in-house strategy team."

– Dean Carlton, Chief Transformation Officer, Global Village Transformations Pty Ltd.
 
"I like your product. I'm frequently designing PowerPoint presentations for my company and your product has given me so many great ideas on the use of charts, layouts, tools, and frameworks. I really think the templates are a valuable asset to the job."

– Roberto Fuentes Martinez, Senior Executive Director at Technology Transformation Advisory
 
"FlevyPro provides business frameworks from many of the global giants in management consulting that allow you to provide best in class solutions for your clients."

– David Harris, Managing Director at Futures Strategy
 
"[Flevy] produces some great work that has been/continues to be of immense help not only to myself, but as I seek to provide professional services to my clients, it gives me a large "tool box" of resources that are critical to provide them with the quality of service and outcomes they are expecting."

– Royston Knowles, Executive with 50+ Years of Board Level Experience
 
"I have used FlevyPro for several business applications. It is a great complement to working with expensive consultants. The quality and effectiveness of the tools are of the highest standards."

– Moritz Bernhoerster, Global Sourcing Director at Fortune 500
 
"I have used Flevy services for a number of years and have never, ever been disappointed. As a matter of fact, David and his team continue, time after time, to impress me with their willingness to assist and in the real sense of the word. I have concluded in fact "

– Roberto Pelliccia, Senior Executive in International Hospitality
 
"Flevy is our 'go to' resource for management material, at an affordable cost. The Flevy library is comprehensive and the content deep, and typically provides a great foundation for us to further develop and tailor our own service offer."

– Chris McCann, Founder at Resilient.World



Customers Also Like These Documents

Explore Related Management Topics



Your Recently Viewed Documents
Download our FREE Digital Transformation Templates

Download our free compilation of 50+ Digital Transformation slides and templates. DX concepts covered include Digital Leadership, Digital Maturity, Digital Value Chain, Customer Experience, Customer Journey, RPA, etc.